Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 29(1): 1-17, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19203928

RESUMO

Net ecosystem productivity (NEP) of boreal coniferous forests is believed to rise with climate warming, thereby offsetting some of the rise in atmospheric CO(2) concentration (C(a)) by which warming is caused. However, the response of conifer NEP to warming may vary seasonally, with rises in spring and declines in summer. To gain more insight into this response, we compared changes in CO(2) exchange measured by eddy covariance and simulated by the ecosystem process model ecosys under rising mean annual air temperatures (T(a)) during 2004-2006 at black spruce stands in Saskatchewan, Manitoba and Quebec. Hourly net CO(2) uptake was found to rise with warming at T(a) < 15 degrees C and to decline with warming at T(a) > 20 degrees C. As mean annual T(a) rose from 2004 to 2006, increases in net CO(2) uptake with warming at lower T(a) were greater than declines with warming at higher T(a) so that annual gross primary productivity and hence NEP increased. Increases in net CO(2) uptake measured at lower T(a) were explained in the model by earlier recovery of photosynthetic capacity in spring, and by increases in carboxylation activity, using parameters for the Arrhenius temperature functions of key carboxylation processes derived from independent experiments. Declines in net CO(2) uptake measured at higher T(a) were explained in the model by sharp declines in mid-afternoon canopy stomatal conductance (g(c)) under higher vapor pressure deficits (D). These declines were modeled from a hydraulic constraint to water uptake imposed by low axial conductivity of conifer roots and boles that forced declines in canopy water potential (psi(c)), and hence in g(c) under higher D when equilibrating water uptake with transpiration. In a model sensitivity study, the contrasting responses of net CO(2) uptake to specified rises in T(a) caused annual NEP of black spruce in the model to rise with increases in T(a) of up to 6 degrees C, but to decline with further increases at mid-continental sites with lower precipitation. However, these contrasting responses to warming also indicate that rises in NEP with climate warming would depend on the seasonality (spring versus summer) as well as the magnitude of rises in T(a).


Assuntos
Dióxido de Carbono/metabolismo , Efeito Estufa , Fotossíntese/fisiologia , Picea/metabolismo , Biomassa , Canadá , Ecossistema , Temperatura Alta , Modelos Biológicos , Picea/crescimento & desenvolvimento , Chuva , Solo , Energia Solar , Árvores/metabolismo , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...